全球百事通!欧几里德几何的多目标优化自适应进化算法——AGE-II
1.AGE-II
(相关资料图)
M. Wagner and F. Neumann, A fast approximation-guided evolutionary multi-objective algorithm, Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, 687-694.一种快速近似引导的进化多目标算法
2.AGE-MOEA
A. Panichella, An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization, Proceedings of the Genetic and Evolutionary Computation Conference, 2019.一种基于非欧几里德几何的多目标优化自适应进化算法
3.A-NSGA—III
H. Jain and K. Deb, An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II:Handling constraints and extending to an adaptive approach, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.一种基于参考点的非支配排序方法的进化多目标优化算法,第二部分:处理约束并扩展到自适应方法
4.ARMOEA
An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 609-622.一种基于指标并且具有参考点好的通用性的多目标进化算法。
5.BCE-IBEA
M. Li, S. Yang, and X. Liu, Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 645-665.帕累托或非帕累托:多目标优化中的双准则演化
6.BCE-MOEA-D
M. Li, S. Yang, and X. Liu, Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 645-665.帕累托或非帕累托:多目标优化中的双准则演化
7.BiGE
M. Li, S. Yang, and X. Liu, Bi-goal evolution for many-objective optimization problems, Artificial Intelligence, 2015, 228: 45-65.多目标优化问题的双目标演化
8.CA-MOEA
Y. Hua, Y. Jin, K. Hao, A clustering-based adaptive Evolutionary algorithm for multiobjective optimization with irregular Pareto fronts, IEEE Transactions on Cybernetics, 2018.一种基于聚类的多目标优化自适应进化算法
9.CCMO
Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2020.约束多目标优化问题的协同进化框架
10.C-MOEA-D
H. Jain and K. Deb, An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: Handling constraints and extending to an adaptive approach, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.一种基于参考点的非支配排序方法的进化多目标优化算法,第二部分:处理约束并扩展到自适应方法。
11.CMOEA-MS
Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin, Balancing objective optimization and constraint satisfaction in constrained evolutionary multi-objective optimization, IEEE Transactions on Cybernetics, 2020在约束进化多目标优化中平衡目标优化和约束满足。
12.CMOPSO
X. Zhang, X. Zheng, R. Cheng, J. Qiu, and Y. Jin, A competitive mechanism based multi-objective particle swarm optimizer with fast convergence,Information Sciences, 2018, 427: 63-76. 一种基于竞争机制的快速收敛多目标粒子群优化器
13.CPSMOEA
J. Zhang, A. Zhou, and G. Zhang, A classification and Pareto domination based multiobjective evolutionary algorithm, Proceedings of the IEEE Congress on Evolutionary Computation, 2015, 2883-2890.一种基于分类和帕累托支配的多目标进化算法
14.CSEA
L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, and Y. Jin, A classification based surrogate-assisted evolutionary algorithm for expensive many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018.一种基于分类的代理辅助进化算法,用于昂贵的多目标优化
15.C-TAEA
K. Li, R. Chen, G. Fu, and X. Yao, Two-archive evolutionary algorithm for constrained multi-objective optimization, IEEE Transactions on Evolutionary Computation, 2018, 23(2): 303-315.约束多目标优化的双归档集进化算法
16.DGEA
C. He, R. Cheng, and D. Yazdani, Adaptive offspring generation for evolutionary large-scale multiobjective optimization, IEEE Transactions on System, Man, and Cybernetics: Systems, 2020.进化大规模多目标优化的自适应后代生成
17.DMOEAeC
J. Chen, J. Li, and B. Xin, DMOEA-εC: Decomposition-based multiobjective evolutionary algorithm with the ε-constraint framework, IEEE Transactions on Evolutionary Computation, 2017, 21(5): 714-730.基于分解的多目标进化算法与ε约束框架
18.dMOPSO
S. Z. Martinez and C. A. Coello Coello, A multi-objective particle swarm optimizer based on decomposition, Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, 2011, 69-76.
19.DWU
G. Moreira and L. Paquete, Guiding under uniformity measure in the decision space, Proceedings of the 2019 IEEE Latin American Conference on Computational Intelligence, 2019.在决策空间的均匀性度量下进行指导
20.EAGMOEAD
X. Cai, Y. Li, Z. Fan, and Q. Zhang, An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 508-523.一种基于分解的外部归档集引导多目标进化算法
21.EFRRR
Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, Balancing convergence and diversity in decomposition-based many-objective optimizers, IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198. 基于分解的多目标优化器中的平衡收敛性和多样性
22.EIMEGO
D. Zhan, Y. Cheng, and J. Liu, Expected improvement matrix-based infill criteria for expensive multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2017, 21(6): 956-975.
23.eMOEA
K. Deb, M. Mohan, and S. Mishra, Towards a quick computation of well-spread Pareto-optimal solutions, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2003, 222-236.
24.EMyOC
R. Denysiuk, L. Costa, and I. E. Santo, Clustering-based selection for evolutionary many-objective optimization, Proceedings of the International Conference on Parallel Problem Solving from Nature, 2014,538-547.基于聚类选择的多目标优化算法
25.ENSMOEAD
S. Zhao, P. N. Suganthan, and Q. Zhang, Decomposition-based multi- objective evolutionary algorithm with an ensemble of neighborhood sizes, IEEE Transactions on Evolutionary Computation, 2012, 16(3): 442-446.基于分解的具有邻域大小集合的多目标进化算法
26.GDE3
S. Kukkonen and J. Lampinen, GDE3: The third evolution step of generalized differential evolution, Proceedings of the IEEE Congress on Evolutionary Computation, 2005, 443-450.
27.GFMMOEA
Y. Tian, X. Zhang, R. Cheng, C. He, and Y. Jin, Guiding evolutionary multi-objective optimization with generic front modeling, IEEE Transactions on Cybernetics, 2018.用通用前沿建模指导进化多目标优化
28.GLMO
H. Zille, Large-scale Multi-objective Optimisation: New Approaches and a Classification of the State-of-the-Art, PhD Thesis, Otto von Guericke University Magdeburg, 2019.新的方法和最先进的分类
29.gNSGAII
J. Molina, L. V. Santana, A .G. Hernandez-Diaz, C. A. Coello Coello, and R.Caballero, g-dominance: Reference point based dominance for multiobjective metaheuristics, European Journal of Operational Research,2009, 197(2): 685-692.基于参考点的多目标元启发式支配
30.GrEA
S. Yang, M. Li, X. Liu, and J. Zheng, A grid-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721-736.一种基于网格的多目标优化进化算法
31.hpaEA
H. Chen, Y. Tian, W. Pedrycz, G. Wu, R. Wang, and L. Wang, Hyperplane assisted evolutionary algorithm for many-objective optimization problems, IEEE Transactions on Cybernetics, 2019.多目标优化问题的超平面辅助进化算法
32.HypE
J. Bader and E. Zitzler, HypE: An algorithm for fast hypervolume-based many-objective optimization, Evolutionary Computation, 2011, 19(1):45-76.一种基于快速超体积多目标优化的算法
33.IBEA
E. Zitzler and S. Kunzli, Indicator-based selection in multiobjective search, Proceedings of the International Conference on Parallel Problem Solving from Nature, 2004, 832-842.多目标搜索中基于指标的选择
34.IDBEA
M. Asafuddoula, T. Ray, and R. Sarker, A decomposition-based evolutionary algorithm for many objective optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(3): 445-460.一种基于多目标优化的分解的进化算法
35.IMMOEA
R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff, A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling, IEEE Transactions on Evolutionary Computation, 2015, 19(6): 838-856.一种基于高斯过程的逆建模多目标优化算法
36.ISIBEA
T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, An interactive simple indicator-based evolutionary algorithm (I-SIBEA) for multiobjective optimization problems, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2015, 277-291.一种基于交互简单指标的多目标优化问题进化算法
37.KnEA
X. Zhang, Y. Tian, and Y. Jin, A knee point-driven evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(6): 761-776.一种用于多目标优化的膝点驱动进化算法
38.KRVEA
T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, A surrogate- assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142.一种用于计算昂贵的多目标优化代理辅助参考向量引导的进化算法,
39.LCSA
H. Zille, Large-scale Multi-objective Optimisation: New Approaches and a Classification of the State-of-the-Art, PhD Thesis, Otto von Guericke University Magdeburg, 2019. 新的方法和最先进的分类
40.LMEA
X. Zhang, Y. Tian, R. Cheng, and Y. Jin, A decision variable clustering based evolutionary algorithm for large-scale many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018, 22(1): 97-112.一种基于决策变量聚类的大规模多目标优化进化算法
41.LMOCSO
Y. Tian, X. Zheng, X. Zhang, and Y. Jin, Efficient large-scale multi-objective optimization based on a competitive swarm optimizer, IEEE Transactions on Cybernetics, 2019.基于竞争群优化器的高效大规模多目标优化
42.LSMOF
C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao, Accelerating large-scale multi-objective optimization via problem reformulation, IEEE Transactions on Evolutionary Computation, 2019.通过问题重构加速大规模多目标优化
43.MaOEACSS
Z. He and G. G. Yen, Many-objective evolutionary algorithms based on coordinated selection strategy, IEEE Transactions on Evolutionary Computation, 2017, 21(2): 220-233.基于协调选择策略的多目标进化算法
44.MaOEADDFC
J. Cheng, G. G. Yen, and G. Zhang, A many-objective evolutionary algorithm with enhanced mating and environmental selections, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 592-605.一种具有增强交配和环境选择的多目标进化算法
45.MaOEAIGD
Y. Sun, G. G. Yen, and Z. Yi, IGD indicator-based evolutionary algorithm for many-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2018.基于IGD指标的多目标优化问题进化算法
46.MaOEAIT
Y. Sun, B. Xue, M. Zhang, G. G. Yen, A new two-stage evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018.一种新的多目标优化两阶段进化算法
47.MaOEARD
Z. He and G. G. Yen, Many-objective evolutionary algorithm: Objective space reduction and diversity improvement, IEEE Transactions on Evolutionary Computation, 2016, 20(1): 145-160.目标空间减少和多样性改善
48.MESMO
S. Belakaria, A. Deshwal, J. R. Doppa, Max-value Entropy Search for Multi-Objective Bayesian Optimization, Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, 7825-7835.多目标贝叶斯优化的最大值熵搜索
49.MMOPSO
Q. Lin, J. Li, Z. Du, J. Chen, and Z. Ming, A novel multi-objective particle swarm optimization with multiple search strategies, European Journal of Operational Research, 2015, 247(3): 732-744.一种新的具有多种搜索策略的多目标粒子群算法
50.MOCell
A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, MOCell: A cellular genetic algorithm for multiobjective optimization, International Journal of Intelligent Systems, 2009, 24(7): 726-746.一种用于多目标优化的细胞遗传算法
51.MOCMA
C. Igel, N. Hansen, and S. Roth, Covariance matrix adaptation for multi- objective optimization, Evolutionary computation, 2007, 15(1): 1-28.协方差矩阵适应多目标优化
52.MOEAD
Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 2007,11(6): 712-731.一种基于分解的多目标进化算法
53.MOEADAWA
Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, MOEA/D with adaptive weight adjustment, Evolutionary Computation, 2014, 22(2): 231-264.具有自适应权重调整、进化计算的MOEA/D
54.MOEADCMA
H. Li, Q. Zhang, and J. Deng, Biased multiobjective optimization and decomposition algorithm, IEEE Transactions on Cybernetics, 2017, 47(1): 52-66.
55.MOEADD
K. Li, K. Deb, Q. Zhang, and S. Kwong, An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Transactions Evolutionary Computation, 2015, 19(5): 694-716.一种基于支配和分解的进化多目标优化算法
56.MOEADDAE
K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, A constrained multi-objective evolutionary algorithm with detect-and-escape strategy, IEEE Transactions on Evolutionary Computation, 2020.一种具有检测逃逸策略的约束多目标进化算法
57.MOEADDE
H. Li and Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302.复杂帕累托集的多目标优化问题
58.MOEADDRA
Q. Zhang, W. Liu, and H. Li, The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances, Proceedings of the IEEE Congress on Evolutionary Computation, 2009, 203-208.
59.MOEADDU
Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, Balancing convergence and diversity in decomposition-based many-objective optimizers, IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198.基于分解的多目标优化器中的平衡收敛性和多样性
60.MOEADEGO
Q. Zhang, W. Liu, E. Tsang, and B. Virginas, Expensive multiobjective optimization by MOEA/D with Gaussian process model, IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456-474.
61.MOEADFRRMAB
K. Li, A. Fialho, S. Kwong, and Q. Zhang, Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 2014, 18(1): 114-130.基于分解的多目标进化算法的自适应算子选择
62.MOEADM2M
H. Liu, F. Gu, and Q. Zhang, Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems, IEEE Transactions on Evolutionary Computation, 2014, 18(3): 450-455.将多目标优化问题分解为多个简单的多目标子问题
63.MOEADMRDL
S. B. Gee, K. C. Tan, V. A. Shim, and N. R. Pal, Online diversity assessment in evolutionary multiobjective optimization: A geometrical perspective, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 542-559.进化多目标优化中的在线多样性评估
64.MOEADPaS
R. Wang, Q. Zhang, and T. Zhang, Decomposition-based algorithms using Pareto adaptive scalarizing methods, IEEE Transactions on Evolutionary Computation, 2016, 20(6): 821-837.
65.MOEADSTM
K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, Stable matching-based selection in evolutionary multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2014, 18(6): 909-923.基于稳定匹配的进化多目标优化选择
66.MOEADURAW
L. R. C. Farias and A. F. R. Araujo, Many-objective evolutionary algorithm based on decomposition with random and adaptive weights. In Proceedings of the 2019 IEEE International Conference on Systems, Mans and Cybernetics.基于随机和自适应权值分解的多目标进化算法
67.MOEADVA
X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables, IEEE Transactions Evolutionary Computation, 2016, 20(2): 275-298.一种基于决策变量分析的大规模变量多目标优化问题的多目标进化算法
68.MOEAIGDNS
Y. Tian, X. Zhang, R. Cheng, and Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, Proceedings of the IEEE Congress on Evolutionary Computation, 2016,5222-5229.一种基于增强反世代距离度量的多目标进化算法
69.MOEAPC
R. Denysiuk, L. Costa, I. E. Santo, and J. C. Matos, MOEA/PC: Multiobjective evolutionary algorithm based on polar coordinates, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2015, 141-155.基于极坐标的多目标进化算法
70.MOEAPSL
Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, Solving large-scale multi-objective optimization problems with sparse optimal solutions via unsupervised neural networks, IEEE Transactions on Cybernetics, 2020.用稀疏最优解通过无监督神经网络求解大规模多目标优化问题
71.MOMBIII
R. Hernandez Gomez and C. A. Coello Coello, Improved metaheuristic based on the R2 indicator for many-objective optimization, Proceedings of the Annual Conference on Genetic and Evolutionary Computation, 2015, 679-686.基于R2指标的改进元启发式多目标优化
72.MOPSO
C. A. Coello Coello and M. S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, Proceedings of the IEEE Congress on Evolutionary Computation, 2002, 1051-1056.
73.MOPSOCD
C. R. Raquel and P. C. Naval Jr, An effective use of crowding distance in multiobjective particle swarm optimization, Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, 2005, 257-264.
74.MPAES
J. D. Knowles and D. W. Corne, M-PAES: A memetic algorithm for multiobjective optimization, Proceedings of the IEEE Congress on Evolutionary Computation, 2000, 325-332.
75.MPSOD
C. Dai, Y. Wang, and M. Ye, A new multi-objective particle swarm optimization algorithm based on decomposition, Information Sciences, 2015, 325: 541-557. 一种新的基于分解的多目标粒子群优化算法
76.MSEA
Y. Tian, C. He, R. Cheng, and X. Zhang, A multi-stage evolutionary algorithm for better diversity preservation in multi-objective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019.一种在多目标优化中更好地保持多样性的多级进化算法
77.MSOPSII
E. J. Hughes, MSOPS-II: A general-purpose many-objective optimiser, Proceedings of the IEEE Congress on Evolutionary Computation, 2007, 3944-3951.
78.MTS
L. Y. Tseng and C. Chen, Multiple trajectory search for unconstrained / constrained multi-objective optimization, Proceedings of the IEEE Congress on Evolutionary Computation, 2009, 1951-1958.多轨迹搜索无约束/约束多目标优化
79.MultiObjectiveEGO
R. Hussein, K. Deb, A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization, in: Proc. Genet. Evol. Comput. Conf. 2016, Denver, 2016: pp. 573?580.
80.MyODEMR
R. Denysiuk, L. Costa, and I. E. Santo, Many-objective optimization using differential evolution with variable-wise mutation restriction, Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, 591-598.
81.NMPSO
Q. Lin, S. Liu, Q. Zhu, C. Tang, R. Song, J. Chen, C. A. Coello Coello, K. Wong, and J. Zhang, Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2018, 22(1): 32-46.
82.NNIA
M. Gong, L. Jiao, H. Du, and L. Bo, Multiobjective immune algorithm with nondominated neighbor-based selection, Evolutionary Computation, 2008,16(2): 225-255.基于非主导邻域选择的多目标免疫算法
83.NSGAII
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
84.NSGAIIconflict
A. L. Jaimes, C. A. Coello Coello, H. Aguirre, and K. Tanaka, Objective space partitioning using conflict information for solving many-objective problems, Information Sciences, 2014, 268: 305-327.
85.NSGAIII
K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.一种基于参考点的非支配排序方法的进化多目标优化算法,第一部分:用盒约束求解问题
86.NSGAIISDR
Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin, A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization, IEEE Transactions on Evolutionary Computation,2018.考虑收敛和多样性的强化支配关系用于进化多目标优化
87.NSLS
B. Chen, W. Zeng, Y. Lin, and D. Zhang, A new local search-based multiobjective optimization algorithm, IEEE Transactions on Evolutionary Computation, 2015, 19(1): 50-73.一种新的基于局部搜索的多目标优化算法
88.onebyoneEA
Y. Liu, D. Gong, J. Sun, and Y. Jin, A many-objective evolutionary algorithm using a one-by-one selection strategy, IEEE Transactions on Cybernetics, 2017, 47(9): 2689-2702.一种使用一对一选择策略的多目标进化算法
89.OSP_NSDE
E. Guerrero-Pena, A. F. R. Araujo, Multi-objective evolutionary algorithm with prediction in the objective space, Information Sciences, 2019, 501: 293-316.目标空间预测的多目标进化算法
90.ParEGO
J. Knowles, ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66.
91.PESAII
D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, PESA-II: Region-based selection in evolutionary multiobjective optimization, Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, 2001, 283-290.
92.PICEAg
R. Wang, R. C. P.urshouse, and P. J. Fleming, Preference-inspired coevolutionary algorithms for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2013, 17(4): 474-494多目标优化的偏好激励协同进化算法
93.PPS
Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, Push and pull search for solving constrained multi-objective optimization problems, Swarm and Evolutionary Computation, 2019, 44(2): 665-679.推拉搜索求解约束多目标优化问题
94.PREA
J. Yuan, H. Liu, F. Gu, Q. Zhang, and Z. He, Investigating the properties of indicators and an evolutionary many-objective algorithm based on a promising region, IEEE Transactions on Evolutionary Computation, 2020.研究了指标的性质和一种基于有前途区域的进化多目标算法
95.RMMEDA
Q. Zhang, A. Zhou, and Y. Jin, RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm, IEEE Transactions on Evolutionary Computation, 2008, 12(1): 41-63.基于规则模型的分布算法多目标估计
96.rNSGAII
L. B. Said, S. Bechikh, and K. Ghedira, The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making, IEEE Transactions on Evolutionary Computation, 2010, 14(5): 801-818.
97.RPDNSGAII
M. Elarbi, S. Bechikh, A. Gupta, L. B. Said, and Y. S. Ong, A new decomposition-based NSGA-II for many-objective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(7): 1191-1210.一种新的基于分解的NSGA-II多目标优化方法
98.RPEA
Y. Liu, D. Gong, X. Sun, and Y. Zhang, Many-objective evolutionary optimization based on reference points, Applied Soft Computing, 2017, 50: 344-355.基于参考点的多目标进化优化
99.RSEA
C. He, Y. Tian, Y. Jin, X. Zhang, and L. Pan, A radial space division based evolutionary algorithm for many-objective optimization, Applied Soft Computing, 2017, 61: 603-621.一种基于径向空间划分的多目标优化进化算法
100.RVEA
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.一种用于多目标优化的参考向量引导进化算法
101.RVEAa
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.一种用于多目标优化的参考向量引导进化算法
102.S3CMAES
H. Chen, R. Cheng, J. Wen, H. Li, and J. Weng, Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations, Information Sciences, 2018.用协方差矩阵自适应演化策略求解具有可扩展的小种群的大规模多目标优化问题
103.SCDAS
H. Sato, H. E. Aguirre, and K. Tanaka, Self-controlling dominance area of solutions in evolutionary many-objective optimization, Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, 2010, 455-465.
104.SIBEA
E. Zitzler, D. Brockhoff, and L. Thiele, The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2007, 862-876.
105.SIBEAkEMOSS
D. Brockhoff and E. Zitzler, Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods, Proceedings of the IEEE Congress on Evolutionary Computation, 2007, 2086-2093.
106.SMEA
H. Zhang, A. Zhou, S. Song, Q. Zhang, X. Gao, and J. Zhang, A self- organizing multiobjective evolutionary algorithm, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 792-806.
107.SMPSO
A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, F. Luna, and E. Alba, SMPSO: A new PSO-based metaheuristic for multi-objective optimization, Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 2009, 66-73.
108.SMSEGO
W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection, Proceedings of the International Conference on Parallel Problem Solving from Nature, 2008, 784-794.
109.SMSEMOA
M. Emmerich, N. Beume, and B. Naujoks, An EMO algorithm using the hypervolume measure as selection criterion, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2005, 62-76.
110.SparseEA
Y. Tian, X. Zhang, C. Wang, and Y. Jin, An evolutionary algorithm for large-scale sparse multi-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2019.大规模稀疏多目标优化问题的进化算法
111.SPEA2
E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength ,Pareto evolutionary algorithm, Proceedings of the Fifth Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2001, 95-100.
112.SPEA2SDE
M. Li, S. Yang, and X. Liu, Shift-based density estimation for Pareto-based algorithms in many-objective optimization, IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365.
113.SPEAR
S. Jiang and S. Yang, A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization, IEEE Transactions on Evolutionary Computation, 2017, 21(3): 329-346.一种基于参考方向的多目标和多目标优化的强度帕累托进化算法
114.SRA
B.Li, K.Tang, J. Li, and X. Yao, Stochastic ranking algorithm for many-objective optimization based on multiple indicators, IEEE Transactions on Evolutionary Computation, 2016, 20(6): 924-938.基于多指标的多目标优化随机排序算法
115.tDEA
Y. Yuan, H. Xu, B. Wang, and X. Yao, A new dominance relation-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(1): 16-37.一种新的基于支配关系的多目标优化进化算法
116.TiGE_2
Y. Zhou, Z. Min, J. Wang, Z. Zhang, and J.Zhang, Tri-goal evolution framework for constrained many-objective optimization, IEEE Transactions on Systems Man and Cybernetics Systems, 2018.约束多目标优化的三目标演化框架
117.ToP
Z. Liu and Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces. IEEE Transactions on Evolutionary Computation, 2019.在决策空间和目标空间中处理约束多目标优化问题
118.Two_Arch2
H. Wang, L. Jiao, and X. Yao, Two_Arch2: An improved two-archive algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 524-541.一种改进的多目标优化双归档集算法
119.VaEA
Y. Xiang, Y. Zhou, M. Li, and Z. Chen, A vector angle-based evolutionary algorithm for unconstrained many-objective optimization, IEEE Transactions on Evolutionary Computation, 2017, 21(1): 131-152.一种基于向量角度的无约束多目标优化进化算法
120.WOF
H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, A framework for large-scale multiobjective optimization based on problem transformation, IEEE Transactions on Evolutionary Computation, 2018, 22(2): 260-275.基于问题变换的大规模多目标优化框架
121.WVMOEAP
X. Zhang, X. Jiang, and L. Zhang, A weight vector based multi-objective optimization algorithm with preference, Acta Electronica Sinica (Chinese), 2016, 44(11): 2639-2645.一种基于权值向量的多目标优化算法
标签:
相关推荐:
精彩放送:
- []富士通电磁炉电路图 电磁炉电路板维修教程
- []世界关注:空间克隆怎么用?网页版如何用?
- []电子机票怎么使用?电子机票使用流程
- []李锋张雪的小说书名叫什么?李锋张雪的小说名字介绍
- []快消息!中学生营养午餐食谱大全 收藏起来
- []世界热点评!《棋魂》佐的消失算不算一个败笔?这其实是个神来之笔
- []推动住宅类不动产率先实现“带押过户”
- []恒盛地产2022年度录得公司拥有人应占亏损2.97亿元 同比下降94.2%
- []微头条丨克勤于邦克俭于家的意思是什么?关于克勤于邦克俭于家的意思解释
- []关晓彤换头像引战触发新热搜 这次的事情是谁有错在先?
- []焦点热门:财面儿丨珠江股份2022年归属股东净亏损18.64亿元
- []天天观察:办外出经营许可证需要什么资料?怎么办理?
- []【新视野】财面儿丨远洋集团2022年营业额为人民币461.27亿元
- []前沿热点:神仙道太初有什么用?魔鼎在哪里?
- []速看:丢的部首是什么?丢的笔顺是什么?
- []当前头条:"股王"业绩出炉!暴赚627亿,将分红325亿!神秘百亿私募疯狂加仓
- []【全球聚看点】龙洲股份:目前,公司所属龙岩市交通职业技术学是龙岩市交通行业从业人员培训、考试基地
- []环球快报:《金鹰独播剧场》璀璨人生演员演员表介绍
- []【天天报资讯】世界最长的三条河流是哪三个?世界最长的河流TOP3
- []全球球精选!上海大众汽车在中国有几家工厂?分别生产什么车型?
- []女漫游二觉主动技能叫什么?和男漫游一样吗?
- []焦点热文:泰国到底是一个怎样的国家?为什么中国人那么多去泰国旅游的?
- []全球实时:工业用电2022最新规定:每千瓦时的电力消费单价也不同
- []焦点快报!当年传奇升级有多难?一比一复刻 升级速度刚刚好
- []天天播报:成都九中光华校区现在怎么样了?成都九中光华校区介绍
- []《笑傲江湖》三大美女:许晴任盈盈 苗乙乙的岳灵珊 仪琳的仪峰
- []露营的钱,不好赚了
- []世界资讯:今天最新消息 新疆葫芦岛成摄影爱好者“天堂”
- []天天最新:【爬取红岭创投】存储在mysql数据库中的无头模式
- []华为光纤猫指示灯有什么用?华为光纤猫指示灯功能介绍
- []多普达手机如何鉴别?多普达手机行货验证介绍
- []每日快讯!2019年运城高考状元名单公布:运城文理科状元是谁?
- []【环球报资讯】冬季家用洗碗机怎么样?家用洗碗机使用特点
- []笔记本电脑电池如何校准电量?教你一招
- []启发式搜索算法解决八数码问题(C语言)珍藏版
- []当前短讯!web服务器是什么?web服务器的概念与类型
- []联想thinkpadx200怎样装系统?五步装电脑
- []世界快播:IE浏览器未响应怎么办?IE浏览器未响应问题的解决办法
- []天天视讯!【scrapy框架】scrapy框架糗事百科爬虫案例分享
- []今日看点:bot短期密集访问形成的流量高峰有哪些?如何解决?
- []天天精选!戴尔笔记本电脑多少钱?戴尔笔记本电脑价格大全
- []世界即时看!无线数字电视怎么搜台?无线数字电视搜台步骤介绍
- []三星S5660手机配置怎么样?三星S5660如何设置时间和日期?
- []焦点热议:IUNI U3的手机系统是什么?IUNI U3能升级安卓4.3吗?
- []mysql-h主机名-p密码库名C-lamp61数据库
- []焦点日报:飞信登录PC客户端时无法正常登录怎么办?无法正常登录的原因有哪些?
- []新消息丨windows10运行ssd训练自己的数据集 pytorch1.8.0+cuda111的数据集
- []全球快资讯丨golang-java-serializer序列化算法解析
- []天天关注:C语言算法---扑克牌排序问题描述
- []天天信息:徕卡镜头有哪些型号?徕卡镜头大全以及报价镜头
- []全球讯息:上坤地产:杨占东辞任执行董事 继续担任执行总裁职务
- []世界热门:专业数字录音机价格是多少钱?买哪种品牌?
- []速读:seo入门知识有哪些?seo入门需掌握的基础知识
- []环球快消息!什么是视频会议系统?视频会议的发展及标准有哪些?
- []环球速递!紫外光激发使光诱导进入二苯并--萘酚的花菁形式
- []世界快资讯丨CCFL是什么?CCFL背光屏有哪些优点?
- []世界讯息:qq字体怎么设置?qq聊天字体设置教程
- []每日速读!显示器色域检测软件怎么下载?显示器色域检测图拉丁版
- []焦点快播:【python】Python中最常用的数据类型
- []每日视讯:去年地产板块收入降超四成 金隅集团今年要“下更大力度去库存”
- []TD早报 | 多方回应搭飞机坐高铁是否需要佩戴口罩;国航:暂未接到下调机票燃油费相关通知
- []世界通讯!3月31日财经早餐:美元走软和美债收益率下降推动黄金需求,关注美国通胀数据
- []观热点:二六三(002467)2022年年报财务简析:增收不增利
- []弘阳地产:2022年实现收入200.13亿元
- []视焦点讯!方圆生活服务:2022年总收入约为人民币5.11亿元
- []太平洋保险的税优识别码,在保单右上方查找
- []天天报道:领悦服务集团:2022年收益为人民币5.77亿元
- []保险公司排名一览表,十大公司排名
- []天天新消息丨养老保险种类
- []【天天聚看点】燕塘乳业2022年营收18.8亿 新零售业务逆势增长58%
- []统筹公司倒闭车险不能理赔怎么办
- []天天动态:保利发展:2022年实现营业总收入2811.08亿元
- []远洋集团:2022年营业额为人民币461.27亿元
- []疫情隔离保险在哪买,有以下三种方法
- []环球热推荐:“快递一哥”顺丰控股去年净利增长45%,前十大股东中4位去年四季度在减持
- []环球今亮点!村民不认可孙国友被称治沙英雄是什么情况
- []全球微头条丨东胜智慧城市服务2022年收入2.27亿港元 同比增加约77%
- []天天快资讯丨新华联所持长沙银行1.39亿股司法拍卖已完成过户手续
- []金茂投资:2022年实现营业收入771.64亿元
- []移卡创始人称数字生活正在加速由2.0进入3.0时代
- []热点评!青岛双星: 您的提问涉及到公司与合作方的商业秘密不便透露,敬请谅解
- []助力乡村振兴 长安汽车帮扶酉阳茶油可持续发展
- []世界讯息:郑州航空港区购房每平方米补贴300元 不限户籍、不限区域
- []建发股份:2022年归属股东净利润62.82亿元
- []首旅酒店:2022年归属股东净亏损5.82亿元
- []直真科技:3月29日公司高管彭琳明减持公司股份合计10000股
- []当前观察:合肥今年首批集中供地揽金约89亿元
- []亚朵集团上市首份成绩单:2022年净利润同比增85.6%
- []美联储更担心通胀年内至少加息一次,黄金腾飞
- []每日头条!交通银行副行长周万阜:财富管理业务具有很大的发展空间
- []协会属于什么性质企业
- []均胜电子:2022年净利3.94亿元 同比扭亏为盈
- []当前最新:发行股票的手续费计入什么科目
- []动态:配债100元一股要不要买
- []焦点热讯:归母利润是什么意思
- []绿景中国地产:2022年归属股东净亏损7.30亿元
- []华侨城:2022年归属股东净亏损109.05亿元
- []最资讯丨两部门:推动常态化开展“带押过户”服务,实现地域范围、金融机构和不动产类型全覆盖
- []焦点讯息:海尔智家2022年财报:业绩双增,利润增速超营收
- []精选!英诺特2022年净利1.51亿同比增长25.31% 董事长叶逢光薪酬12万
- 天天微动态丨SIS与ESD、DCS、PLC,四者之间有什么关系?一文读懂SIS与DCS的关系
- 全球百事通!欧几里德几何的多目标优化自适应进化算法——AGE-II
- 《魔兽世界》所改编的网络游戏单机版 你玩过吗?
- 热点评!泛海微无线电动牙刷怎么样?无线充电电动牙刷技术介绍
- 当前动态:天涯明月刀:1月第1批天涯合璧-数据互通(合服)即将启动
- 焦点信息:怎么设置excel2007冻结窗口?excel2007冻结窗口设置方法
- 全球要闻:如何成为一名优秀的产品经理?这四步很重要
- java中的TCP是什么?如何进行通讯?
- 快讯:财面儿丨建发股份:房地产业务2022年归母净利润22.67亿元 同比下降21.23%
- 每日快报!如何发布一个BT种子文件?2个步骤搞定
- 环球精选!财报金选丨万科企业2022年度营收5038.4亿元,同比增长11.3%
- 全球快看点丨万科晒年报:行业震荡中实现业绩企稳,经营服务业务收入突破500亿
- 【热闻】金辉控股:2022年净利润约为人民币20.8亿元
- 焦点消息!中科金财:公司业务和回款一直以来均具有季节性特征,四季度回款量较大
- 安徽天堂寨在哪里_安徽天堂寨
- 粤海置地:2022年归属股东净利润3.93亿港元
- 指南针:公司业务目前不涉及ChatGPT相关应用,也暂未有从事AI基础研究计划
- 焦点讯息:精研科技:随着人工智能的发展,我们认为在以下几个方面会有更多、更高效的散热方案需求
- 富通信息:公司专业从事以光纤光缆制造为核心的光通信业务和以石英管材产品为辅助的石英制品业务
- 鲁商发展:2022年归属股东净利润0.45亿元
- 中国中铁:2022年房地产业务新签合同额751.9亿元
- 当前热议!中梁控股:2022年实现收入393.3亿元
- 【世界热闻】建发物业:2022年实现收入22.90亿元
- 近期经济运行亮点 | 甘肃省临夏州重锤敲响项目建设起势锣 凝心聚力力保有效投资开门红
- 鲁商服务:2022年实现收入6.27亿元
- 快资讯:陆家嘴:2022年实现营业收入117.62亿元
- 当前关注:中骏商管:2022年实现收入11.82亿元
- 水井坊:一季度业绩详见拟于4月份披露的公司一季度报告
- 环球关注:福星股份:2022年实现收入151.42亿元
- 沿海家园:出售珠海沿海股权事项补充材料将延迟至5月31日寄发
- 每日视讯:微盟发布2022年报:总营收18亿元 下半年亏损环比收窄0.8亿
- ST宏达:公司目前没有对外引进资产的计划,如有相关计划将按规则及时披露
- 环球最资讯丨溢价近90%战投荣盛石化,沙特阿美的野心不止于此
- 焦点速递!斩获储能双奖|华塑闪耀金砖储能大会
- 每日热点:跌无可跌,新能源板块暴力反弹一触即发!
- 两款手机表现有何不同?选HUAWEI magic5,还是oppofindx6?
- 环球热文:浙江海曙区2022年下半年非自然人家庭屋顶光伏项目补贴资金120198元
- 热推荐:比亚迪年报发布!2022年平均日营收11.62亿元!
- 环球速读:450MWh!宁德时代海外储能提速!
- “双碳目标”驱动箭牌家居绿色发展,以身作则引领行业绿色智造升级
- 实时焦点:在这里,孩子们感受家的温暖(一线调研)
- 合肥第二批供地挂牌11宗地块 总起始价98.44亿元
- 全球动态:中国铁建:2022年房地产开发业务实现收入622.53亿元
- 沙河股份:2022年实现收入7.63亿元
- 天天亮点!沙河股份2022年营业收入7.64亿元 房地产销售收入占98.45%
- 环球滚动:港发展局指交椅洲人工岛每年平开支只占政府每年总开支不到5%
- 楚江新材:公司产品暂未应用于固态氢能发电领域
- 怎么野,你说了算!奇瑞首款轻越野TJ-1开启全球征名
- 当前看点!九安医疗:持续血糖监测仪(CGMS)研发项目是公司募投项目之一,目前处于研发阶段,还需要一段时间
- 世界速读:通策医疗:公司不存在挪用资金情形,也不存在被ST的情形
- 支付宝出境游服务覆盖超过70个国家和地区 最新去韩国可用支付宝买火车票
- 前沿热点:21566人参观!2023中国国际清洁能源博览会暨中国氢能展圆满落幕
- 环球热资讯!身体抱恙是什么意思?抱恙出自哪里?
- putup加动词什么形式?putup是什么意思?
- 【全球聚看点】金地集团29.95亿元公司债将付息 利率分别为3.91%及4.30%
- 今日精选:北京故宫的特点有哪些?北京故宫资料介绍?
- 几套房要征收房产税?房产税怎么征收?
- 天天热资讯!厦门象屿完成发行23亿中期票据 利率1.69%
- 天天视点!“创”字当头“智”造为先 泸州老窖荣获2022年度四川省科学技术进步奖一等奖
- 当前时讯:斛珠的意思是什么?斛珠出自哪里?
- 12万买宝马? 营销噱头多于让利,难助力宝马电动化转型
- 实时:金管局:港家庭负债占GDP比率升至95.5%
- 盘它是什么意思?盘它一词的来源是什么?
- 全球看点:新地香港apm复活节生意额料增25%
- 每日讯息!吸附在鲨鱼身上的鱼是什么鱼?吸附在鲨鱼身上的鱼有什么特征?
- 世界今日讯!华润建筑有限公司是国企吗?华润建筑有限公司资料介绍?
- 当前滚动:公司社保怎么办理?公司社保的办理方式?
- 野风现代中心二期6.4亿元ABS项目更新至“已受理”
- 要闻:张辽和张颌是什么关系?张辽的简单介绍?
- 天天热推荐:3月30日豪迈科技涨停分析:风电,轮胎概念热股
- 全球即时:3月30日江波龙涨停分析:闪存,DRAM(内存),大基金概念概念热股
- 世界最资讯丨如何自然疏通浴室水槽
- 关上灯,点亮希望——宁波阪急响应“地球一小时”活动
- 【全球时快讯】求生之路2怎么局域网联机?局域网联机方法详解
- 全球微动态丨联想ThinkPad有哪些型号?联想ThinkPad各系列型号介绍
- 华为HiLink是什么?华为路由器hilink怎么用?
- QQ网络硬盘在哪?如何添加QQ界面?
- 世界今热点:躲过15次GC之后 进入老年代系统有哪些规则?
- iPhone5怎么升级ios7?8款苹果设备升级更新
- 克而瑞深度解读百瑞纪首本《住房租赁轻资产运营白皮书》
- 每日快播:张坤隐形重仓股曝光 再谈投资:每一次市场的大幅下跌 股票都是在“打折促销”
- 网吧服务器维护工具怎么下载?网吧维护管理助手使用方法
- 摄像机的焦距是什么意思?摄像机焦距对应距离介绍
- 世界即时看!【剑灵力士】新版本力士职业天赋加点推荐 备战不删档
- 每日头条!如何打开pdg文件?手把手教你打开PDG文件
- 每日热文:湖北长阳农商银行被罚60万元:因违规办理展期业务等
- 福建莆田市住房公积金政策调整 最低首付款比例20%
- 当前时讯:湖北襄阳出台购房新政 多孩家庭可获4万元补贴
- 微速讯:中建一局集团完成发行30亿票据 利率2.20%
- 西藏:适当提高住房公积金贷款最高额度
- 当前视讯!拉芳家化:公司将在2023年4月份公布2022年度的经营情况,还请届时关注
- 焦点要闻:众信旅游:目前,公司核心团队人员情况稳定,不存在专业人才流失的情况
- 全球热资讯!越秀资本完成发行8亿短期融资券 票面利率2.32%
- 来宾彩印手提无纺布袋定制,环保无纺布袋制作厂家
- 携程集团CEO孙洁:出入境游年底会反弹至80%水平
- 世界微动态丨日本角川出版公司奥运项目负责人承认向东京奥组委官员行贿
- 合肥2023首场土拍落幕 13宗地块成交总揽金约88.49亿元
- 全球热点评!东星医疗:公司若有股权激励计划,将根据相关规定及时履行信息披露义务
- 成都双流板桥轨道公司100%股权挂牌将满一年 目前尚未成功转让
- 天天快看:武汉城建开元森泊度假乐园项目签约 投资总额达22亿元
- 即时:合生创展2022年实现核心利润10.81亿港元 同比下降77.27%
- 【新视野】一张图:黄金原油外汇股指"枢纽点+多空占比"一览(2023/03/30周四)
- 欧盟就2030年可再生能源目标达成协议 成员国42.5%的能源将来自风能等可再生能源
- 碧桂园2022年股东应占核心净利润26.1亿元
- 碧桂园:2022年股东应占核心净利润约26.1亿元
- 【全球速看料】美日反弹若延续,将挑战132.85和135阻力!
- 环球热点!运城城建集团拟发行10亿元中期票据 期限3年
- 世界微速讯:现货黄金交易策略:多空陷入“拉锯战”,关注初请数据和美联储官员讲话
- 蒙特利尔银行上调贵金属价格预期,预测黄金表现优于白银!
- 合生创展集团:2022年股权持有人应占溢利为87.62亿港元